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Adversarial training: Each training sample is modified by an adversary.
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Adversarially-trained linear regression

▶ Linear regression:

min
β

#train∑
i=1

(y i − β⊤x i )
2

▶ Adversarial training in linear regression:
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Adversarially-trained linear regression

#train∑
i=1

max
∥∆x i∥≤δ

(y i − (x i +∆x i )
Tβ)2

It can be rewritten as:

#train∑
i=1

(
|y i − xTi β|+ δ∥β∥∗

)2

where ∥ · ∥∗ is the dual norm.
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Similarities with Lasso

▶ ℓ∞-adversarial attacks:

#train∑
i=1

(
|y i − xTi β|+ δ∥β∥1

)2

▶ Lasso:
#train∑
i=1

(
|y i − xTi β|

)2
+ λ∥β∥1.

Main results:

#1. Map λ ↔ δ for which they yield the same result.

#2. More parameters than data: abrupt transition into interpolation.

#3. Optimal choice of δ independent on noise level.
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# 1. Equivalence with Lasso

Map λ ↔ δ for which they yield the same result.
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# 2. More parameters than data

Lasso: transition only in the limit

λ → 0+ ⇒
#train∑
i=1

(
y i − xTi β

)2
→ 0

Adversarial training:

δ ∈ (0, threshold] ⇒
#train∑
i=1

(
y i − xTi β

)2
= 0

7 / 28



# 2. More parameters than data

Lasso: transition only in the limit

λ → 0+ ⇒
#train∑
i=1

(
y i − xTi β

)2
→ 0

Adversarial training:

δ ∈ (0, threshold] ⇒
#train∑
i=1

(
y i − xTi β

)2
= 0

7 / 28



# 2. More parameters than data
Lasso: transition only in the limit

λ → 0+ ⇒
#train∑
i=1

(
y i − xTi β

)2
→ 0

Adversarial training:

δ ∈ (0, threshold] ⇒
#train∑
i=1

(
y i − xTi β

)2
= 0

10−1 100 101 102 103 104 105

1/X

10−21
10−16
10−11
10−6
10−1

Tr
ai

n.
M

SE

Param. shriking

7 / 28



# 2. More parameters than data
Lasso: transition only in the limit

λ → 0+ ⇒
#train∑
i=1

(
y i − xTi β

)2
→ 0

Adversarial training:

δ ∈ (0, threshold] ⇒
#train∑
i=1

(
y i − xTi β

)2
= 0

10−1 100 101 102 103 104 105

1/X

10−21
10−16
10−11
10−6
10−1

Tr
ai

n.
M

SE

Adv. train

Param. shriking

7 / 28



# 2. More parameters than data
Lasso: transition only in the limit

λ → 0+ ⇒
#train∑
i=1

(
y i − xTi β

)2
→ 0

Adversarial training:

δ ∈ (0, threshold] ⇒
#train∑
i=1

(
y i − xTi β

)2
= 0

10−1 100 101 102 103 104 105

1/X

10−21
10−16
10−11
10−6
10−1

Tr
ai

n.
M

SE

Adv. train

Param. shriking

threshold

7 / 28



# 2. Equivalence with minimum norm interpolator

For δ ∈ (0, threshold], the minimum-norm interpolator is the solution to adversarial
training.
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# 2. Equivalence with minimum norm interpolator

For δ ∈ (0, threshold], the minimum-norm interpolator is the solution to adversarial
training.

Relevance

Connect adversarial training with double descent and benign overfitting
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# 3. Invariance to noise levels

To obtain near-oracle performance.

▶ Lasso:
λ ∝ σ

√
log(#params)/#train

▶ ℓ∞-adversarial attack :
δ ∝

√
log(#params)/#train

Data model

y = x⊤β∗︸ ︷︷ ︸
signal

+ σ︸︷︷︸
noise std.

ε.
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Regularization properties of adversarially-trained linear regression

Additional results:

▶ ℓ2-adv. attacks and ridge regression.

▶ Generalization to other loss functions

▶ Connection to robust regression and
√
Lasso.

Regularization properties of adversarially-trained linear regression
Antônio H. Ribeiro, Dave Zachariah, Francis Bach, Thomas B. Schön.

NeurIPS (2023) - Spotlight
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Generalization of deep neural networks

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. ICLR, 2017
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Double-descent curves

M. Belkin, D. Hsu, S. Ma, S. Mandal. Reconciling modern machine learning practice and the bias-variance trade-off. PNAS, 2020.
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Double-descent

▶ Ph.D. seminar course:
The unreasonable effectiveness of

overparameterized machine learning models

(3 hp), 2021

▶ Double descent in dynamical
systems.
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Overparameterized Linear Regression under Adversarial Attack

Interpretation

Minimum ℓ2-norm interpolation ⇔ ℓ2-adversarial training. (Result #2, Part I)

Analysis:

▶ Assimptotic results showing the phenomena

▶ Non-asymptotic results: concentration inequalities

Overparameterized Linear Regression under Adversarial Attack.
Antônio H. Ribeiro, Thomas B. Schön.
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The electrocardiogram (ECG) exam

Cardiovascular diseases:

▶ ≈18 million deaths in 2019 (32%).

The ECG is the major diagnostic tool.

▶ Low-cost, safe and non-invasive

▶ Can detect arrhythmias, myocardial
infarction, cardiomyopathy...

Left: ECG signal Right: Electrode placement.
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Computational electrocardiography

Figure Automated ECG interpretation Glasgow (1971).

Macfarlane, P.W.; Kennedy, J. ”Automated ECG Interpretation—A Brief History from High Expectations to Deepest Networks.” Hearts 2021.
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The transition into end-to-end learning

Figure: Accuracy on Imagenet as models transitioned from feature extraction to end-to-end.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” CVPR (2009)
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Telehealth and automatic diagnosis

Figure: State of Minas Gerais
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Telehealth and automatic diagnosis

Telehealth Center of Minas Gerais

▶ 1100 municipalities

▶ > 3 500 ECGs per day

Figure: Municipalities assisted by the telehealth center
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Automatic diagnosis of the ECG

▶ CODE dataset: historical data 2010 to 2017.
▶ n =1.6M patients

▶ Develop and evaluate deep neural network
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Automatic diagnosis of the ECG (cont.)

▶ Result: Deep neural network (DNN) performs
at least as well as experts
cardio. → 4th year cardiology residents

emerg. → 3rd year emergency residents

stud. → 5th year Medical students

▶ Goal: Improve the accuracy

assist more patients

Automatic diagnosis of the 12-lead ECG using a deep neural network
A. H. Ribeiro , M.H. Ribeiro, Paixão, G.M.M. et al

Nature Communications (2020)
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Three directions

1. Automatic diagnosis;

2. Screening;

3. Prognosis.



Screening for Chagas disease from the ECG using deep neural networks

▶ 6 million people infected.

▶ Diagnosed with blood test.

▶ Early diagnosis and treatment halt
progression.

▶ Low detection rates

Screening for Chagas disease from the electrocardiogram using a deep neural network
Carl Jidling, Daniel Gedon, Thomas B. Schön, Claudia Di Lorenzo Oliveira, Clareci Silva Cardoso, Ariela Mota Ferreira, Luana

Giatti, Sandhi Maria Barreto, Ester C. Sabino, Antônio L. P. Ribeiro, Antônio H. Ribeiro
Plos Neglected Tropical Diseases (2023)
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ECG predicted-age

Deep neural network estimated electrocardiographic-age as a mortality predictor
Emilly M. Lima*, Antônio H. Ribeiro*, Gabriela MM Paixão*, et. al. Equal contribution

Nature Communications (2021)
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Risk predictor of cardiovascular events

Electrocardiographic Age Predicts Cardiovascular Events in Community: The Framingham Heart Study
Luisa C C Brant, Antônio H Ribeiro, Marcelo M Pinto-Filho, et. al.

Circulation: Cardiovascular Quality and Outcomes (2023)
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Challenges

▶ Interpretability Attempt to draw real electrocardiographic knowledge.

Figure: Grad-CAM plots. (Left) STEMI. (Middle) STEMI. (Right) NSTEMI.

Development and validation of deep learning ECG-based prediction of myocardial infarction in emergency department patients.
S. Gustafsson, D. Gedon, E. Lampa, Antônio H. Ribeiro, M. J. Holzmann, T. B. Schön, J. Sundström.

Scientific Reports (2022)

▶ Robustness. Ability to work in real situations.

ML algorithms don’t need to be really interpreable to be useful in clinical practice.
But they need to be robust!
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S. Gustafsson, D. Gedon, E. Lampa, Antônio H. Ribeiro, M. J. Holzmann, T. B. Schön, J. Sundström.

Scientific Reports (2022)

▶ Robustness. Ability to work in real situations.

ML algorithms don’t need to be really interpreable to be useful in clinical practice.
But they need to be robust!
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Adversarial attacks in ECGs

▶ x → ŷ :
Normal (Probability = 0.99)

▶ ∥∆x∥ < δ

▶ x +∆x → ỹ :
AFib (Probability = 1.00)

Han, X., Hu, Y., Foschini, L. et al.Deep learning models for electrocardiograms are susceptible to adversarial attacks.Nature Medicine.(2020)
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Conclusion

▶ Large-scale models have great potential for medicine (and critical applications).

▶ Robustness is a major challenge.

▶ Adversarial attacks framework allows for analysis of worst-case scenarios.

▶ Linear models for insight and analysis.

▶ Adversarially-trained linear regression is a competitive regression method.

Thank you!

antonio.horta.ribeiro@it.uu.se
antonior92.github.io
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