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We derive upper and lower bounds for
the adversarial risk in linear regres-
sion. Then—using results from ran-
dom matrix theory—we present the
asymptotic bounds for `2 attacks. We
show that the characteristic second de-
scent in the overparametrized region is
still present. The result is also con-
firmed experimentally.

1. Introduction

Deep learning models have achieved im-
pressive performance in many tasks. At the
same time these models turn out to be quite
brittle in some situations. This is evidenced
by studying adversarial examples, which show
that synthesized imperceptible perturbations
of the input data may cause the model to make
highly confident, but erroneous predictions.

In another line of work, the good perfor-
mance of these models in test data—which al-
most perfectly fit the training data—has mo-
tivated the study of overparametrized models
and lead to new findings. A key observation
that followed is the presence of a second de-
scent in the risk as we increase the model ca-
pacity beyond the point of (almost) perfectly
fitting the training data (Belkin et al., 2019).

In this work, we connect the two ideas and
study the effect of adversarial attacks in over-
parametrized models. We consider perhaps the
simplest setting where a second descent in risk
has been observed: linear regression (Hastie
et al., 2019; Bartlett et al., 2020). The purpose
of using a simplified setting is twofold: first, to
make it amenable to theoretical analysis; and,
second, to make it possible to isolate the role of
overparametrization in the adversarial perfor-
mance. That is, deep learning systems usually
contain many design parameters that interfere
with each other in non-obvious ways and could
conceal the role of overparametrization in the
adversarial performance.

2. Setup

Data generating model. Assume the train-
ing data (xi, yi) ∈ Rm ×R for i = 1, . . . , n was

generated from

(xi, εi) ∼ Px × Pε, (1a)

yi = xTi β + εi, (1b)

for which the random draws across i = 1, . . . , n
are independent. Here Px is a distribution on
Rp, such that E{x} = 0 and Cov{x} = Σ. Fur-
thermore, Pε is an independent distribution in
R such that E{ε} = 0 and Var{ε} = σ.
Notation. Here, ‖v‖p denotes the p-norm of
the vector v. And, given a symmetric matrix
Σ, we denote ‖v‖Σ = vTΣv.
Risk. The adversarial risk is

Radv
p = E

{
max

‖∆x0‖p≤δ
(y0 − (x0 + ∆x0)Tβ̂)2

∣∣∣∣X} .
The standard out-of-sample risk E

{
(y0 − xT0 β̂)

2
∣∣∣X}

would correspond to the case there is no dis-
turbance, i.e. δ = 0.
Minimum norm solution. We assume the
parameters have been estimated as

β̂ = (XTX)†XTy, (2)

where (XTX)† represents the pseudo-inverse of
XTX. In the overparametrized (m > n) case,
when more then one solution is possible, this
correspond to the solution for which the pa-
rameter norm ‖β‖2 is minimum.

3. Results
We first provide upper and lower bounds

on the adversarial risk for adversarial attacks
bounded by generic p-norms.

Lemma 1 (Bounds on the adversarial risk).
For 1 < p < ∞, let q be a positive real
number for which 1

p + 1
q = 1. Let us denote

RΣ = E
{
‖β − β̂‖2Σ

∣∣∣X}, Nq = E
{
‖β̂‖2q

∣∣∣X},

then the adversarial risk is bounded,

RΣ+δ2Nq+σ
2 ≤ Radv

p ≤
(√

RΣ + δ
√
Nq

)2
+σ2.

(3)
The result also holds when p = 1 or p = ∞
for, respectively, q = ∞ and q = 1. Further-
more, for the case when there is no adversarial
disturbance (i.e., δ = 0) the equality holds.

We now limit the scope to the case p = q =
2 because N2 can be treated similarly to RΣ



in this case. The next lemma presents closed-
form expressions for RΣ and N2 in terms of the
problem matrices.

Lemma 2 (Bias-variance decomposition). We

define Σ̂ = 1
nX

TX, Φ = Σ̂†Σ̂ and Π = I − Φ.
Where Φ and Π are orthogonal projectors: Π
is the projection into the null space of X and
Φ, into the row space of X. Then:

RΣ = βTΠΣΠβ +
σ2

n
tr(Σ̂†Σ). (4)

Similarly, for q = 2:

N2 = βTΦβ +
σ2

n
tr(Σ̂†). (5)

Next we present the asymptotics for RΣ

and N2, as n,m → ∞ while keeping the ratio
m/n → γ. The risk RΣ is extensively studied
by Hastie et al. (2019) and the next result is
presented in it for the case the features xi are
i.i.d. It is proved using more or less standard
random matrix theory results. Other scenarios
(correlated features or misspecified models) are
also studied in (Hastie et al., 2019) and could
be used here with minor modifications.

Lemma 3 (Asymptotics). Assume that xi are
i.i.d. and has a moment of order greater then
8 that is finite. Assume that ‖β‖22 = r2. Then,
as n,m→∞ m/n→ γ, it holds almost surely
that:

RI →

{
σ2 γ

1−γ , γ < 1,

r2(1− 1
γ ) + σ2 1

γ−1 , γ > 1.
(6)

For q = 2, it holds almost surely that:

N2 →

{
r2 + σ2 γ

1−γ , γ < 1,

r2 1
γ + σ2 1

γ−1 , γ > 1.
(7)

Plugging RΣ and Nq asymptotics back
into (3) we can establish an asymptotic bounds
on the adversarial risk. This bounds together
with the points obtained by the sample risk ob-
tained experimentally are displayed in Fig. 1,
showing that the characteristic second descent
curve after the interpolation threshold appears
also for the adversarial `2 risk.

4. Discussion
Classifiers relying on many features with

small correlation with the output are non-
robust (Ilyas et al., 2019). They can have good
normal performance, but the performance can
degrade quickly under `∞ adversarial attack.
Tsipras et al. (2019) show this both in a lin-
ear classification setting and, also, in more in-
volved deep learning examples.

Figure 1: Adversarial risk. The solid lines
gives the asymptotic upper and lower bounds
computed using Lemmas 1 and 3. The points
correspond to the empirical adversarial risk for
experiments with n = 100. The results are for
r2 = 2, σ2 = 1.

In overparametrized systems, the ampli-
tude of individual features in the model predic-
tion reduces with the number of features and,
hence, the correlation with the output. Hence,
it is expected that the `∞ adversarial perfor-
mance will degrade as we increase the number
of features.

The result we present here shows that this
is not necessarily the case for `2 adversarial
attacks and that the second descent in the
risk can still be observed in the interpolation
regime. The future direction of this work is to
use the same framework to study the behaviour
of adversarial attacks bounded by `1, `∞ and
other p norms, which appear often in the study
of adversarial attacks.
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Appendices

A. Proof of Lemma 1

The adversarial risk,

Radv
p = E

{
max

‖∆x0‖p≤δ
(y0 − (x0 + ∆x0)Tβ̂)2

∣∣∣∣X} , (8)

can be rewritten, after some algebraic manipulation, as

Radv
p = E

{
max

‖∆x0‖p≤δ

(
(∆xT0 β̂)2 − 2(β − β̂)Tx0∆xT0 β̂

)∣∣∣∣X}+ E
{
‖β − β̂‖2Σ

∣∣∣X}︸ ︷︷ ︸
RΣ

+σ2. (9)

In turn, let r = ∆xT0 β̂ and a = (β − β̂)Tx0. It follows from Hölder inequality, that ‖∆x0‖p ≤ δ
implies that |r| ≤ δ‖β̂‖q, for q satisfying 1/p + 1/q = 1. Since we can always choose vectors

such that the equality holds, then the term inside the expectation of the second hand side is

equal to: M = max|r|≤δ‖β̂‖q(r2 − 2ar). Now the maximum is attained at r = −δ‖β̂‖q if a ≥ 0

and at r = δ‖β̂‖q if a < 0, hence M = δ2‖β̂‖2q + 2δ‖β̂‖q|a|. It follows that:

Radv
p = δ2E

{
‖β̂‖2q |X

}
︸ ︷︷ ︸

Nq

+2δE
{
‖β̂‖q|(β − β̂)Tx0|

∣∣∣X}+ E
{
‖β − β̂‖2Σ

∣∣∣X}︸ ︷︷ ︸
RΣ

+σ2. (10)

In turn,

0 ≤ E
{
‖β̂‖q|(β − β̂)Tx0|

∣∣∣X} ≤√E{‖β̂‖2q∣∣∣X}E{‖β − β̂‖2Σ∣∣∣X} =
√
NqRΣ. (11)

where the second inequality is a direct application of the Cauchy-Schwartz inequality. The

results follows.

B. Proof of Lemma 2

Proof for N2. From Eq. (1b) and Eq. (2) it follows that:

β̂ = (XTX)†XTX︸ ︷︷ ︸
Φ

β + (XTX)†︸ ︷︷ ︸
1
n

Σ̂†

XTε. (12)

Hence, since Σ̂ is symmetric:

β̂Tβ̂ = βTΦTΦβ +
1

n2
εTXΣ̂†Σ̂†XTε, (13)

where the first term is equal to βTΦβ since, Φ is symmetric i.e., ΦT = Φ, and since it is a

projector i.e., ΦΦ = Φ. Matrix that satisfy these two properties are called orthogonal projectors.

Now, since the second term is a scalar it is equal to its trace. Using the fact that the trace
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is invariant over cyclic permutations,

εTXΣ̂†Σ̂†XTε = tr
{

Σ̂†XTεεTXΣ̂†
}
. (14)

From the assumption the noise samples are independent and have variance σ2, we have E{εεT} =

σ2I, where I is the identity matrix. Since we can swap the trace and the expectation we obtain

E
{
β̂Tβ̂

∣∣∣X} = βTΦβ +
1

n2
tr

Σ̂†XTE{εεT}︸ ︷︷ ︸
σ2I

XΣ̂†

 . (15)

And the results follow from the definition of Σ̂† and the property of pseudoinverse: Σ̂†Σ̂Σ̂† = Σ̂†

Proof for RΣ . From (12), it follows that:

β − β̂ = (I − Φ)︸ ︷︷ ︸
Π

β +
1

n
Σ̂†XTε. (16)

where, again Π is a orthogonal projector i.e., ΠT = Π and Π Π = Π. We can then compute the

close formula (4)for RΣ using exact the same procedure as we did for N2.

C. Proof of Lemma 3

Lemma 3 proof is given in (Hastie et al., 2019) Section 2.4 and Section 3.
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