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Adversarial Examples

Fig.: Adv. example on image classification.

[1] I. J. Goodfellow, J. Shlens, C. Szegedy,“Explaining and Harnessing Adversarial
Examples”, ICLR 2015.

Adversarial training in linear models

Adversarially-trained linear regression minimizes:

n∑
i=1

max
∥∆xi∥≤δ

(yi − (xi +∆xi)
Tβ)2

Cost function is convex. It can be rewritten as: [2]

n∑
i=1

(
|yi − xT

i β|+ δ∥β∥∗
)2

where ∥ · ∥∗ is the dual norm.

[2] A H Ribeiro and T B Schön, “Overparameterized Linear Regression under Adversarial
Attacks”, IEEE Transactions on Signal Processing, 2023

Pairs of dual norms

ℓ2-adversarial attacks

Adv. constraint: ∥∆x∥2 ≤ δ Cost function

∑n
i=1

(
|yi − xT

i β|+ δ∥β∥2
)2

ℓ∞-adversarial attacks

Adv. constraint: ∥∆x∥∞ ≤ δ Cost function

∑n
i=1

(
|yi − xT

i β|+ δ∥β∥1
)2

Motivation

How does adversarial training compare with other regularization methods?

Regularization methods:

# 1. Parameter shrinking methods.

# 2. Minimum-norm interpolators.

# 3. Robust regression and
√

Lasso.

#1: Equivalence with parameter shrinking

Backgroud:

• Ridge: minβ
∑n

i=1

(
|yi − xT

i β|
)2

+ λ∥β∥22.

• Lasso: minβ
∑n

i=1

(
|yi − xT

i β|
)2

+ λ∥β∥1.

Our result: map λ ↔ δ for which the results are asymptotically equiva-
lent if E [x] = 0 and x ∼ −x.

Numerical experiments:
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(a) Lasso.
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(b) ℓ∞-adv. training.

More parameters than data

Lasso and ridge regression: transition only in the limit

λ → 0+ ⇒ Mean square error → 0

Adversarial training: we observe an abrupt transition:

δ ∈ (0, threshold] ⇒ Mean square error = 0
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#2: Minimum norm interpolators

Definition: Minimum ∥ · ∥∗-norm interpolator:

min
β

∥β∥∗ subject to xiβ = yi,∀i.

Backgroud: (a) βridge(λ) → βmin−ℓ2 ; (b)βlasso(λ) → βmin−ℓ1 .

Our result: When #train < #params and δ ∈ (0, threshold]

(a) Minimum ℓ2-norm interpolator is solution to ℓ2-adv. training.

(b) Minimum ℓ1-norm interpolator is solution to ℓ∞-adv. training.

Why minimum-norm interpolators?

• Gradient descent on linear regression (β0 = 0) converges to βmin−ℓ2 .

• Used in the study of double-descent [3] and benign-overfitting.

[3] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice
and the classical bias–variance trade-off,” PNAS 2019.

Invariance to noise magnitude

Background: If data is generated as

y = x⊤β∗︸ ︷︷ ︸
signal

+ σ ε︸︷︷︸
N (0,1)

For Lasso, near-oracle performance is attained with:

λ ∝ σ︸︷︷︸
unknown

√
log(#params)/#train

Our result: For ℓ∞-adv. attack, near-oracle performance is attained with

δ ∝
√

log(#params)/#train.

That is, the adv. radius δ can be set without knowledge of the noise
magnitude.

#3: Relation to robust regression and
√
Lasso

√
Lasso: Has the same property. It is the estimator: [4]

min
β

√∑n
i=1|yi − x⊤

i β|2 + λ∥β∥1.

and it attains near-oracle performance if:

λ ∝
√

log(#params)/#train

Robust regression: [5]

min
β

max
∆∈S

∥y − (X +∆)β∥2.

It is equivalent to
√
Lasso if columns are constrained: ∥∆i,:∥2 ≤ δ, ∀i.

Our result: Robust regression is equivalent to adversarial training if rows
are constrained: ∥∆:,j∥2 ≤ δ, ∀j.

[4] A. Belloni, V. Chernozhukov, and L. Wang, “Square-Root Lasso: Pivotal Recovery of
Sparse Signals via Conic Programming,” Biometrika 2011.
[5] H. Xu, C. Caramanis, and S. Mannor, “Robust regression and lasso,” NIPS 2008

Future work

• Error-in-variables: adv. training making it more robust to input dis-
turbance ∆x that are stochastic.

• Tailored solver: enableuse in high-dimensional applications (genetics).

• Nonlinear models: most results still hold for inputs in infinite spaces.


