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Signals, systems and sequences

(a) Fibonacci (b) Text

Figure: Sequence



Signals, systems and sequences

(a) Biomedical signal (b) Speech signal

Figure: Signals



Signals, systems and sequences

System

Figure: System



Training models in optimization-based framework

I Observed output: yk ;

I Predictive model: ŷk(θ).

I Cost function:

V (θ) =
N∑

k=1

l(yk , ŷk(θ)).

I Iterative update based. Based on the derivatives.
E.g. Gradient descent:

θn ← θn−1 − µ∇V (θn−1)

I Batch vs stochastic

I Derivatives computed using automatic differentiation.
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l(yk , ŷk(θ)).

I Iterative update based. Based on the derivatives.
E.g. Gradient descent:

θn ← θn−1 − µ∇V (θn−1)

I Batch vs stochastic

I Derivatives computed using automatic differentiation.



Training models in optimization-based framework

I Observed output: yk ;

I Predictive model: ŷk(θ).
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Nonlinear systems and non-convex cost function

(a) convex (b) non-convex



Overview

ECG Automatic diagnosis using a deep neural network

Deep convolutional networks in system identification

Parallel training considered harmful?

Multiple shooting

Analysing RNN training using attractors and smoothness



The 12-lead electrocardiogram (ECG)

(a) ECG signal (b) ECG placement

Figure: The 12-lead electrocardiogram exam.



Telehealth network of Minas Gerais

Figure: Telehealth in Minas Gerais

M. B. Alkmim, R. M. Figueira, M. S. Marcolino, C. S. Cardoso,
M. Pena de Abreu, L. R. Cunha, D. F. da Cunha, A. P. Antunes,
A. G. d. A. Resende, E. S. Resende, and A. L. P. Ribeiro,
“Improving patient access to specialized health care: The
Telehealth Network of Minas Gerais, Brazil,” Bulletin of the World
Health Organization, vol. 90, no. 5, pp. 373–378, May 2012, issn:
1564-0604. doi: 10/f3x7px.

https://doi.org/10/f3x7px


ECG segmentation

(a) QRS complex (b) T and P waves

Figure: Two-step automated analysis of the electrocardiogram..



Classical EGG automated analysis

Segmentation Classification
Output

Figure: Peaks and wave lenghts.

P. W. Macfarlane, B. Devine, and E. Clark, “The university of
glasgow (Uni-G) ECG analysis program,” in Computers in
Cardiology, 2005, pp. 451–454, isbn: 0276-6574. doi:
10.1109/CIC.2005.1588134.

https://doi.org/10.1109/CIC.2005.1588134


Deep neural networks

Yoshua Bengio, Geoffrey Hinton and Yann LeCun ”for conceptual
and engineering breakthroughs that have made deep neural
networks a critical component of computing.”

– Turing award (2018)



Image classification with deep neural networks

(a) Samples (b) Accuracy

Figure: The imagenet image classification benchmark.



The CODE group

Figure: The CODE (Clinical outcomes in eletrocardiography) group was
created to conduct clinical studies using storical data from the telehealth
network.



Automatic diagnosis of the 12-lead ECG using a
deep neural network

Antônio H. Ribeiro, Manoel Horta Ribeiro, Gabriela M.M.
Paixão, Derick M. Oliveira, Paulo R. Gomes, Jéssica A.
Canazart, Milton P. S. Ferreira, Carl R. Andersson, Peter W.
Macfarlane, Wagner Meira Jr., Thomas B. Schön, Antonio
Luiz P. Ribeiro
Automatic diagnosis of the 12-lead ECG using a deep neural
network
Nature Communication, 2020.



Deep neural network for automatic ECG analysis

Figure: Abnormalities to classify. We show only 3 representative leads
(DII, V1 and V6).



The training dataset

I 2.3 million records;

I 1.6 million distinct patients;

I Annotated by telehealth center cardiologist;

I Refined by comparing with University of Glasgow software
results;

I 30 000 exams manually reviewed.
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The model

Figure: The uni-dimensional residual neural network architecture used for
ECG classification.



Convolutions
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Figure: Simplified diagram illustrating convolutions.



Subsampling and strides
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Figure: Strides. Convolution followed by subsampling.



Convolutional neural network
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Figure: Simplified convolutional neural network.



Residual neural networks



Figure: Residual connection.

K. He, X. Zhang, S. Ren, and J. Sun (2016),
Identity Mappings in Deep Residual Networks,
Computer Vision – ECCV, pp. 630–645, Springer International
Publishing, 2016.



The testing dataset

I 827 tracings from distinct patients;

I Annotated by 3 different cardiologists;

I The 2017 physionet challenge has a testset of 3658 ECGs
from different patients (4.4 times the size of our dataset).



Results

F1 Score
DNN cardio. emerg. stud.

1dAVb 0.897 0.776 0.719 0.732
RBBB 0.944 0.917 0.852 0.928
LBBB 1.000 0.947 0.912 0.915

SB 0.882 0.882 0.848 0.750
AF 0.870 0.769 0.696 0.706
ST 0.960 0.882 0.946 0.873

Table: Performance indexes



Discussion

I Potential to improve tele-health service in short/medium term;

I Screen more important exams;

I Avoid medical mistakes and improve accuracy.



“Why not a recurrent neural network?”



The fall of recurrent neural networks

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N., Kaiser,  L., and Polosukhin, I. (2017).
Attention is All you Need.
Advances in Neural Information Processing Systems 30, pages
5998–6008.



Convolution neural networks for sequence modeling

S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation
of Generic Convolutional and Recurrent Networks for Sequence
Modeling,” en, p. 14, 2018.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu, “WaveNet: A Generative Model for Raw Audio,”
arXiv:1609.03499 [cs], Sep. 2016. arXiv: 1609.03499 [cs].

https://arxiv.org/abs/1609.03499


Deep convolutional networks in system identification

Carl Andersson*, Antonio H. Ribeiro*, Koen Tiels, Niklas
Wahlström and Thomas B. Schön (* Equal contribution).
Deep Convolutional Networks in System Identification
To appear in the proceedings of the 58th IEEE Conference on
Decision and Control (CDC), 2019.



System identification
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Figure: Learning input-output relations between signals.



Convolutions for capturing input-output relations
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Figure: Learning input-output relations between signals.
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Figure: Learning input-output relations between signals.



Capturing input-output relations using dilations
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Figure: Convolutional network modeling input-output relations using
dillations.



Autorregressive terms
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Figure: Learning input-output relations between signals using
autorregressive term.



Summary of the results

I 3 examples: 1 toy problem; 2 nonlinear system identification
benchmarks (Oscillatory circuit Silverbox, F16 ground
vibration test);

I Mixed results: convolutional network often worse than vanilla
multilayer perceptron and long-short term memory

I Potential to provide good results in sys. id. (even if this
requires us to rethink these models).

I Traditional deep learning tricks did not always improve
performance.

I Dilation (exponential decay of dynamical systems)
I Dropout
I Depth
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One-step-ahead vs free-run simulation

Figure: One-step-ahead
prediction

Figure: Free run simulation
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“Parallel training considered harmful?”

Ribeiro, A. H. and Aguirre, L. A. (2018).
”Parallel Training Considered Harmful?”: Comparing
Series-Parallel and Parallel Feedforward Network Training.
Neurocomputing, v. 316 (17) pp. 222-231.
doi: 10.1016/j.neucom.2018.07.071



Parallel vs Series-Parallel Training

Parallel mode Series-parallel model



Literature review

Narendra, K. S. and Parthasarathy, K. (1990).
Identification and control of dynamical systems using neural
networks.
IEEE Transactions on Neural Networks, 1(1):4–27.

Beale, M. H., Hagan, M. T., and Demuth, H. B. (2017).
Neural network toolbox for use with MATLAB.
Technical report, Mathworks.



Example 1: pilot plant

SP P102

103

104

105

M
SE

Figure: Boxplots show the distribution of the free-run simulation MSE
over the validation window for models trained using series-parallel (SP)
and parallel (P) for 100 realizations (changing only the initial parameter
guess).



Example 2: toy problem

The nonlinear system:

y∗[k] = (0.8− 0.5e−y
∗[k−1]2)y∗[k − 1]−

(0.3 + 0.9e−y
∗[k−1]2)y∗[k − 2] + u[k − 1] +

0.2u[k − 2] + 0.1u[k − 1]u[k − 2] + v [k],

y [k] = y∗[k] + w [k],

S. Chen, S. A. Billings, and P. M. Grant (1990)
Non-linear system identification using neural networks
International Journal of Control, vol. 51, no. 6, pp. 1191-1214,



Example 2: validation results

0 10 20 30 40 50 60 70 80 90 100
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Figure: Displays the first 100 samples of the free-run simulation in the
validation window for models trained using series-parallel (SP) and
parallel (P) methods. MSESP = 0.39; MSEP = 0.06.



Example 2: white noise effect
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(a) White process error
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(b) White output error

Figure: Free-run simulation MSE over the validation window vs noise
levels.



Example 2: white noise effect

0.0 0.4 0.8 1.2 1.6 2.00.0

0.5

1.0

1.5

2.0

σv

M
SE

SP
P

(a) White process error

0.0 0.4 0.8 1.2 1.6 2.00.0

0.2

0.4

0.6

0.8

1.0

σw

(b) White output error

Figure: Free-run simulation MSE over the validation window vs noise
levels.

Ljung, L. (1978).
Convergence analysis of parametric identification methods.
IEEE Transactions on Automatic Control, 23(5):770–783.



Parallel vs series-parallel

I Series-parallel and parallel training have different properties
and are better depending on the noise type;

I Similar computational cost can be attained. However, parallel
training is difficult to parallelize;

I Parallel training is more dependent on initial optimization
conditions.



On the smoothness of nonlinear system
identification

Antônio H. Ribeiro and Luis A. Aguirre (2017).

Shooting Methods for Parameter Estimation of Output Error Models.

IFAC-PapersOnLine, v. 50. p. 13998-14003. In: IFAC World Congress,
2017, Toulouse, France.

Antônio H. Ribeiro, Koen Tiels, Jack Umenberger, Thomas B. Schön,
Luis A. Aguirre (2020).

On the Smoothness of Nonlinear System Identification

Automatica, provisionally accepted.



Feedforward vs recurrent structures

(a) Feedforward (b) Recurrent

Ljung, L. (1978).
Convergence analysis of parametric identification methods.
IEEE Transactions on Automatic Control, 23(5):770–783.



Single shooting vs multiple shooting

Single Shooting

minV .

Multiple Shooting

min
∑
i
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s.t.: xi−1[mi ] = xi0, ∀i .
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Example 1: output error model for chaotic system

Logistic map, generated for
θ = 3.78:

y [k] = θy [k − 1](1− y [k − 1]).

Figure: single shoot 2 2.5 3 3.5 4
0

20

40

60

80

θ

V
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Logistic map, generated for
θ = 3.78:

y [k] = θy [k − 1](1− y [k − 1]).
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Example 1: output error model for chaotic system

Logistic map, generated for
θ = 3.78:

y [k] = θy [k − 1](1− y [k − 1]).

Figure: shoot length = 5 2 2.5 3 3.5 4
0

5

10

15

20

25

θ

V



Example 1: output error model for chaotic system

Logistic map, generated for
θ = 3.78:

y [k] = θy [k − 1](1− y [k − 1]).

Figure: shoot length = 2
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Example 1: output error model for chaotic system

Table: Number of function evaluations (median) for different simulation
lengths.

shoot len f evals

200∗ 21.5

10 2000*

5 74

2 32



Example 2: pendulum

(a) Pendulum (b) Inverted pendulum (c) 360 pendulum
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(d) Pendulum
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(e) Inverted pendulum
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(f) 360 pendulum

Figure: The same system in three dynamical regimes



Example 2: pendulum parameter estimation

Figure: Contour plot of the cost function.



Beyond exploding and vanishing gradients

Antônio H. Ribeiro, Koen Tiels, Luis A. Aguirre and Thomas B. Schön.
(2020)

Beyond exploding and vanishing gradients: analysing RNN training using
attractors and smoothness

To appear in the Proceedings of the 23rd International Conference on
Artificial Intelligence and Statistics (AISTATS)



Recurrent neural network

RNNs are nonlinear discrete-time dynamical systems, and can be
represented by the expression:

xt+1 = f(xt , zt ;θ), (1)

ŷt = g(xt , zt ;θ), (2)

za which are sufficiently general to capture vanilla RNNs, LSTM,
GRU, and stacked layers of these units.



Exploding gradients

Figure: Wall in the cost function (Pascanu et al., 2013)

Pascanu, R., Mikolov, T., and Bengio, Y. (2013).

On the Difficulty of Training Recurrent Neural Networks.

In Proceedings of the 30th International Conference on International
Conference on Machine Learning (ICML), pages 1310–1318.



Smoothness vs dynamic

Theorem

1. The cost function V is Lipschitz with constant:

LV =


O(L2Nf ) if Lf > 1,

O(N) if Lf = 1,

O(1) if Lf < 1.

(3)

2. The gradient ∇V is Lipschitz with constant:

L′V =


O(L3Nf ) if Lf > 1,

O
(
N3
)

if Lf = 1,

O (1) if Lf < 1.

(4)



Contractive vs non-contractive

Definition: (Contractive) For some L < 1:

‖xt+1 −wt+1‖ < L‖xt −wt‖.

All contractive systems have a unique fixed point inside the
contractive region Ωx, and all trajectories converge to such a fixed
point



Smoothness analysis
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Figure: Chaotic LSTM. Display: a) Bifurcation diagram; and b) cost
function (mean-square error) for LSTM models with parameter vectors
θ(s) = sθtrue.



Example: classifying sequences based on a few relevant
symbols

I Sequence containing categorical values {p, q, a, b, c , d};

I Distractor symbols {a, b, c , d};
I Output: {p, p}, {p, q}, {q, p}, {q, q}.

{�, �} {�, �} {�, �} {�, �}

{�} {�}

Start

Figure: Finite state machine that needs to be implemeted to solve
the problem.
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RNN architectures

(a) Long-short term
memory (LSTM)

e

m

(b) Stable LSTM

e

m

(c) Orthogonal RNN

Hochreiter, S. and Schmidhuber, J. (1997).

Long short-term memory.

Neural Computation, 9(8):1735–1780.



RNN architectures

(a) Long-short term
memory (LSTM)

e

m

(b) Stable LSTM

e

m

(c) Orthogonal RNN

Miller, J. and Hardt, M. (2019).

Stable Recurrent Models.

In Proceedings of the 7th International Conference for Learning
Representations (ICLR).



RNN architectures

(a) Long-short term
memory (LSTM)

e

m

(b) Stable LSTM

e

m

(c) Orthogonal RNN

Lezcano-Casado, M. and Mart́ınez-Rubio, D. (2019).

Cheap Orthogonal Constraints in Neural Networks: A Simple
Parametrization of the Orthogonal and Unitary Group.

In Proceedings of the 36th International Conference on Machine Learning
(ICML), pages 3794–3803.



Example: learning attractors

(a) LSTM, p → {p, p} (b) LSTM, b → {p, p}

(c) oRNN, p → {p, p} (d) oRNN, b → {p, p}

Figure: Learning to classify sequences. Bifurcation diagram for the
sequence classification task for sequences of length 100. It shows the
steady-state of the output yt and its first difference yt − yt−1.



Example: smoothness of the cost function
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(a) Length 100
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(b) Length 200

Figure: Sequence classification training history. Accuracy on
validation data set for the recurrent models trained to perform the same
sequence classification task for two different sequence lengths.



Language model

I Given the context, it tries to predict the next word:

Figure: Example of phrase it can try to predict.

I We train a language model on the openly available dataset
Wikitext-2 (Merity et al., 2017). This dataset contains 600
Wikipedia articles for training (2,088,628 tokens), 60 articles
for validation (217,646 tokens), and 60 articles for testing
(245,569 tokens)



Example: training history
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Figure: Word-level language model training history. Perplexity on
validation data per epoch.



Teacher forcing
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Example: learning attractors

(a) LSTM (b) oRNN (c) sLSTM

(d) LSTM,
with feedback

(e) oRNN,
with feedback

(f) sLSTM,
with feedback

Figure: The same system in three dynamical regimes
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Conclusion

I Differentiable nonlinear models (including deep learning) are
powerful tools.

I It should enable new application and allow us to revisit old
ones.

I What is the role of recurrence?
I Excitement with RNN in 2015 preceded the current wave of

interest in feedforward architectures.

I “The Unreasonable Effectiveness of Recurrent Neural
Networks” (Andrej Karpathy, now Director of AI Tesla).

I System theory, control theory and signal processing should
play a key role in the analysis;
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