Artificial intelligence for ECG classification and prediction of the risk of death

Antônio H. Ribeiro
Uppsala University, Sweden

AIMLab group meeting
Technion, 2021
1. The Telehealth Network of Minas Gerais and the CODE group;
Presentation outline

1. The Telehealth Network of Minas Gerais and the CODE group;
2. Open source and SciPy;
3. Automatic classification of ECGs using deep learning
4. Mortality risk from the AI predicted ECG-age.
Presentation outline

1. The Telehealth Network of Minas Gerais and the CODE group;
2. Open source and SciPy;
3. Automatic classification of ECGs using deep learning;
1. The Telehealth Network of Minas Gerais and the CODE group;
2. Open source and SciPy;
3. Automatic classification of ECGs using deep learning;
4. Mortality risk from the AI predicted ECG-age.
Telehealth Network of Minas Gerais

<table>
<thead>
<tr>
<th>Year</th>
<th># Municipalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>82</td>
</tr>
<tr>
<td>2007</td>
<td>102</td>
</tr>
<tr>
<td>2008</td>
<td>97</td>
</tr>
<tr>
<td>2009</td>
<td>328</td>
</tr>
<tr>
<td>2011</td>
<td>54</td>
</tr>
<tr>
<td>2013</td>
<td>106</td>
</tr>
<tr>
<td>2015</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>811</td>
</tr>
</tbody>
</table>

The CODE group

Figure: The CODE (Clinical outcomes in electrocardiography) group was created to conduct clinical studies using storical data from the telehealth network.
My first experience with ECG processing

Figure: Filtered ECGs

https://github.com/antonior92/ECG-jupyter-notebook
Removing powerline interference

scipy.signal.iirnotch

scipy.signal.iirnotch(w0, Q, fs=2.0)

Design second-order IIR notch digital filter.

A notch filter is a band-stop filter with a narrow bandwidth (high quality factor). It rejects a narrow frequency band and leaves the rest of the spectrum little changed.

Parameters:
- w0 : float
 Frequency to remove from a signal. If fs is specified, this is in the same units as fs. By default, it is a normalized scalar that must satisfy 0 < w0 < 1, with w0 = 1 corresponding to half of the sampling frequency.
- Q : float
 Quality factor. Dimensionless parameter that characterizes notch filter -3 dB bandwidth as relative to its center frequency, \(Q = \frac{w0}{\text{bw}} \).
- fs : float, optional
 The sampling frequency of the digital system.
 New in version 1.2.0.

Returns:
- b, a : ndarray, ndarray
 Numerator (b) and denominator (a) polynomials of the IIR filter.

Figure: The Notch filter: my first contribution to SciPy
My trajectory in SciPy

Figure: timeline

- Notch filter: July 2016
- trust-exact solver: Jan 2017
- Google Summer of Code: May to July 2017
- trust-constr solver: Jan 2018
- I join SciPy core developers: Fev 2018
- Scipy Paper published at Nature Methods: Mar 2020
- >3500 citations >8000 stars on GH: Today
SciPy organization and governance

- Hosted on github;
- Contributors >> Core Developers >> Steering Council >> Benevolent Dictator for Life;
ECG segmentation

(a) QRS complex
(b) T and P waves

Figure: ECG segmented using signal processing
Classical ECG automated analysis

Figure: Two step procedure

Machine learning and artificial intelligence
Deep neural networks

Yoshua Bengio, Geoffrey Hinton and Yann LeCun “for conceptual and engineering breakthroughs that have made deep neural networks a critical component of computing.”

– Turing award (2018)
Image classification with deep neural networks

(a) Samples

(b) Accuracy

Figure: The imagenet classification benchmark.
Automatic ECG classification

Figure: The uni-dimensional residual neural network architecture used for ECG classification.

The training dataset

- 2.3 million records 1.6 million distinct patients;
- Annotated by telehealth center cardiologist;
- Refined by comparing with University of Glasgow software results;
- 30,000 exams manually reviewed.

Figure: Abnormalities for the classification problem.
The testing dataset

- 827 tracings from distinct patients;
- Annotated by 3 different cardiologists.
Results

<table>
<thead>
<tr>
<th></th>
<th>F1 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DNN</td>
</tr>
<tr>
<td>1dAVb</td>
<td>0.897</td>
</tr>
<tr>
<td>RBBB</td>
<td>0.944</td>
</tr>
<tr>
<td>LBBB</td>
<td>1.000</td>
</tr>
<tr>
<td>SB</td>
<td>0.882</td>
</tr>
<tr>
<td>AF</td>
<td>0.870</td>
</tr>
<tr>
<td>ST</td>
<td>0.960</td>
</tr>
</tbody>
</table>

Table: Performance indexes
Age-prediction model

Figure: Predicted vs estimated age in 15% hold-out test set (n = 218,169 patients). Mean absolute error of 8.38 years.

\[\Delta \text{age} = \text{ECG-age} - \text{age} \]

ECG-age as a mortality predictor

Figure: Kaplan-Meier survival curve (CODE-15%)

Table: Hazard ratio from Cox model

<table>
<thead>
<tr>
<th></th>
<th>Adjusted by age and sex</th>
<th>Adjusted by age, sex and comorbidities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ age < 8 y</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Δ age > 8 y</td>
<td>1.79</td>
<td>1.78</td>
</tr>
</tbody>
</table>
Validation on ELSA-Brasil (and Sami-Trop)

Figure: Kaplan-Meier survival curve (ELSA-Brasil)

Table: Hazard ratio from Cox model

<table>
<thead>
<tr>
<th>Adjusted by age and sex</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ age < - 8 y</td>
<td>0.74</td>
</tr>
<tr>
<td>Δ age > 8 y</td>
<td>1.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adjusted by age, sex and comorbidities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ age < - 8 y</td>
<td>0.82</td>
</tr>
<tr>
<td>Δ age > 8 y</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Brazilian longitudinal study of adult health (ELSA-Brasil): Objectives and design
American Journal of Epidemiology 175 (4), 315-324.
Analysis on ECGs classified as normal

Table: Hazard ratio from Cox model

<table>
<thead>
<tr>
<th></th>
<th>CODE-15%</th>
<th>ELSA-Brasil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted by age and sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ age < - 8 y</td>
<td>0.66</td>
<td>0.91</td>
</tr>
<tr>
<td>Δ age > 8 y</td>
<td>1.53</td>
<td>1.63</td>
</tr>
<tr>
<td>Adjusted by age, sex and comorbidities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ age < - 8 y</td>
<td>0.66</td>
<td>0.91</td>
</tr>
<tr>
<td>Δ age > 8 y</td>
<td>1.52</td>
<td>1.42</td>
</tr>
</tbody>
</table>
Discussion

- Improved automatic classification using deep learning
 - Potential to improve tele-health service in short/medium term;
 - Screen more important exams;
 - Avoid medical mistakes and improve accuracy.

- AI to extend the potential of ECG for prognosis
 - Capability of identifying patterns that are not obvious for a cardiologist (double-edged aspect of it);
 - Extend ECG role in risk stratification.
Thank you!

Contact info:

✉️ antonio.horta.ribeiro@it.uu.se
🐦 @ahortaribeiro
🌐 antonior92.github.io
🐱 github.com/antonior92