Artificial intelligence for ECG classification and prediction of the risk of death

Antônio H. Ribeiro

Uppsala University, Sweden

International Congress of Electrocardiology ICE, 2021

Computerized electrocardiography analysis

Figure: ECG displayed to the doctor in the Telehealth Network of Minas Gerais system

ECG segmentation

Figure: ECG segmented using signal processing

Classical ECG automated analysis

P. W. Macfarlane, B. Devine, and E. Clark, "The university of glasgow (Uni-G) ECG analysis program," in *Computers in Cardiology*, 2005, pp. 451–454, ISBN: 0276-6574. DOI: 10.1109/CIC.2005.1588134.

Machine learning and artificial intelligence

Telehealth Network of Minas Gerais

Year	# Municipalities	
2006	82	
2007	102	
2008	97	
2009	328	
2011	54	
2013	106	
2015	42	
Total	811	

M. B. Alkmim, R. M. Figueira, M. S. Marcolino, *et al.*, "Improving patient access to specialized health care: The Telehealth Network of Minas Gerais, Brazil," *Bulletin of the World Health Organization*, vol. 90, no. 5, pp. 373–378, May 2012, ISSN: 1564-0604. DOI: 10/f3x7px.

The CODE group

Figure: The CODE (*Clinical outcomes in eletrocardiography*) group was created to conduct clinical studies using storical data from the telehealth network.

Automatic ECG classification

Figure: The uni-dimensional residual neural network architecture used for ECG classification.

Ribeiro, A.H., Ribeiro, M.H., Paixão G.M.M. et. al. (2020)
Automatic diagnosis of the 12-lead ECG using a deep neural network
Nature Communications (11), 1760.

The training dataset

- 2.3 million records 1.6 million distinct patients;
- Annotated by telehealth center cardiologist;
- Refined by comparing with University of Glasgow software results;
- 30 000 exams manually reviewed.

Figure: Abnormalities for the classification problem.

The testing dataset

- 827 tracings from distinct patients;
- Annotated by 3 different cardiologists.

Results

	F1 Score			
	DNN	cardio.	emerg.	stud.
1dAVb	0.897	0.776	0.719	0.732
RBBB	0.944	0.917	0.852	0.928
LBBB	1.000	0.947	0.912	0.915
SB	0.882	0.882	0.848	0.750
AF	0.870	0.769	0.696	0.706
ST	0.960	0.882	0.946	0.873

Table: Performance indexes

Age-prediction model

 Δ age = ECG-age - age

Figure: Predicted vs estimated age in 15% hold-out test set (n = 218,169 patients). Mean absolute error of 8.38 years.

E. M. Lima, A. H. Ribeiro, G. M. Paixão, *et al.*, "Deep neural network estimated electrocardiographic-age as a mortality predictor," *medRxiv*, Feb. 2021. DOI: 10.1101/2021.02.19.21251232.

ECG-age as a mortality predictor

Figure: Adjusted survival analysis (CODE-15%

Table: Hazard ratio from Cox model

Adjusted by age and sex				
Δ age $<$ - 8 y	0.78			
Δ age $>$ 8 y	1.79			
Adjusted by age, sex and comorbities				
Δ age $<$ - 8 y	0.78			
Δ age $>$ 8 y	1.78			

Validation on ELSA-Brasil (and Sami-Trop)

Table: Hazard ratio from Cox model

Adjusted by age and sex			
Δ age $<$ - 8 y	0.74		
Δ age $>$ 8 y	1.75		
Adjusted by age, sex and comorbities			
Δ age $<$ - 8 y	0.82		
Δ age $>$ 8 y	1.57		

Figure: Adjusted survival analysis ELSA-Brasil

 Aquino, E. M. L., Barreto, S.M., Bensenor I.M., et. al. (2020) Brazilian longitudinal study of adult health (ELSA-Brasil): Objectives and design American Journal of Epidemiology 175 (4), 315-324. Analysis on ECGs classified as normal

Table: Hazard ratio from Cox model

	CODE-15%	ELSA-Brasil			
Adjusted by age and sex					
Δ age < - 8 y	0.66	0.91			
Δ age $>$ 8 y	1.53	1.63			
Adjusted by age, sex and comorbities					
Δ age $<$ - 8 y	0.66	0.91			
Δ age $>$ 8 y	1.52	1.42			

Discussion

Improved automatic classification using deep learning

- Potential to improve tele-health service in short/medium term;
- Screen more important exams;
- Avoid medical mistakes and improve accuracy.
- Al to extend the potential of ECG for prognosis
 - Capability of identifying patterns that are not obvious for a cardiologist (double-edged aspect of it);

Extend ECG role in risk stratification.

Thank you!

Contact info:

antonio.horta.ribeiro@it.uu.se

💟 @ahortaribeiro

⊕ antonior92.github.io

O (github.com/antonior92)