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The state of Minas Gerais and telehealth

▶ Minas Gerais

▶ approximately the same area as France.
▶ 853 municipalities

▶ Telehealth center of Minas Gerais

▶ More than 4000 ECGs per day
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Electrocadiogram exam and machine learning

Goal: Build data-driven ECG analysis tools.

▶ Cardiovascular diseases: 32% of all deaths (GBD 2019).

▶ The ECG is the major diagnostic tool.

▶ CODE dataset: annotated historical data n =1.6M
patients.

▶ Model for automatic diagnosis:
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A. H. Ribeiro , M.H. Ribeiro, Paixão, G.M.M., et al. “Automatic diagnosis of the 12-lead ECG using a deep neural network,” Nature

Communications, 2020
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Adversarial examples

Figure: Effect of adversarial examples on ECG Classification.

Source: Han, X., Hu, Y., Foschini, L. et al. Deep learning models for electrocardiograms are susceptible to adversarial attack. Nature Medicine 26,

360–363 (2020).
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Adversarial robustness

“what is the role of high-dimensionality in model robustness?”

Overparameterized Linear Regression under Adversarial Attacks (2023). Antônio H. Ribeiro, Thomas B. Schön. IEEE Transactions on Signal

Processing (preprint: arxiv.org/abs/2204.06274).

Adversarial training

“How is it connected to other regularization methods?”’

Surprises in adversarially-trained linear regression (2022). Antônio H. Ribeiro, Dave Zachariah, Francis Bach, Thomas B. Schön. Work in progress.
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Framework: Linear regression

Simplest case where adversarial vulnerability has been observed.

I. J. Goodfellow, J. Shlens, C. Szegedy ,“Explaining and Harnessing Adversarial Examples”, ICLR 2015

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Ma, “Robustness May Be At Odds with Accuracy,” ICLR, p. 23, 2019.

▶ Training dataset:
(x1, y1), (x2, y2), · · · , (xn, yn) ⇒ β̂

▶ Model prediction
ŷ = β̂Tx

▶ Error(β̂) = |y − xTβ̂|
▶ Adv-error(β̂) = max∥∆x∥≤δ

∣∣∣y − (x +∆x)Tβ̂
∣∣∣
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Adversarial error in linear regression

▶ Error(β̂) = |y − xTβ̂|
▶ Adv-error(β̂) = max∥∆x∥≤δ

∣∣∣y − (x +∆x)Tβ̂
∣∣∣

▶ Dual formula for the adversarial error(
Adv-error(β̂)

)2
=

(
|Error(β̂)|+ δ∥β̂∥∗

)2

▶ where ∥ · ∥∗ is the dual norm.

6 / 30



ℓp-adversarial attacks

▶ ℓ∞-adversarial attack: {∥∆x∥∞ ≤ δ} ⇒ dual norm: ∥∆x∥1

▶ ℓ2-adversarial attack: {∥∆x∥2 ≤ δ} ⇒ dual norm: ∥∆x∥2
▶ ℓp-adversarial attack: {∥∆x∥p ≤ δ} ⇒ dual norm: ∥∆x∥q

for 1/p + 1/q = 1

ℓ1 ℓ1.5 ℓ2 ℓ20 ℓ∞
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What is the role of high-dimensionality in model robustness?

▶ High-dimensionality as a source of vulnerability:
I. J. Goodfellow, J. Shlens, C. Szegedy ,“Explaining and Harnessing Adversarial Examples”, ICLR 2015

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Ma, “Robustness May Be At Odds with Accuracy,” ICLR, 2019.

J. Gilmer et al., “Adversarial Spheres,” arXiv:1801.02774, Sep. 2018.

▶ High-dimensionality as a source of robustness:
S. Bubeck and M. Sellke, “A Universal Law of Robustness via Isoperimetry,” Advances in Neural Information Processing Systems, 2021

8 / 30



What is the role of high-dimensionality in model robustness?

▶ High-dimensionality as a source of vulnerability:
I. J. Goodfellow, J. Shlens, C. Szegedy ,“Explaining and Harnessing Adversarial Examples”, ICLR 2015

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Ma, “Robustness May Be At Odds with Accuracy,” ICLR, 2019.

J. Gilmer et al., “Adversarial Spheres,” arXiv:1801.02774, Sep. 2018.

▶ High-dimensionality as a source of robustness:
S. Bubeck and M. Sellke, “A Universal Law of Robustness via Isoperimetry,” Advances in Neural Information Processing Systems, 2021

8 / 30



How neural networks can perform well?

Language models Image classification

Figure: Models number of parameters

Sources: J. Simon (2021) “Large Language Models: A New Moore’s Law?”. Online (acessed: 2021-11-09). URL:

huggingface.co/blog/large-language-models .

M. Tan and Q. V. Le (2019) “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML

9 / 30



Overparametrized models

Can a model perfectly fit the training data and still generalize well?

▶ Benign overfitting
P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear regression,” Proceedings of the National Academy of

Sciences, vol. 117, no. 48, pp. 30063–30070, Apr. 2020.

▶ Double descent
M. Belkin, D. Hsu, S. Ma, and S. Mandal , “Reconciling modern machine-learning practice and the classical bias–variance trade-off,” PNAS

(2019)

▶ Example:

Figure: nonlinear ARX mean squared error (MSE).
A. H. Ribeiro, J. N. Hendriks, A. G. Wills, T. B. Schön. “Beyond Occam’s Razor in System Identification: Double-Descent when Modeling

Dynamics”. IFAC SYSID 2021. Honorable mention: Young author award
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Setup: minimum-norm interpolator

min
β

∥β∥2 subject to Xβ = y

▶ Gradient descent in linear regression converges to β̂min−ℓ2 .

▶ Used to study benign overfitting in:
P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear regression,” Proceedings of the National Academy of

Sciences, vol. 117, no. 48, pp. 30063–30070, Apr. 2020.

▶ Use to study double descent in:
M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice and the classical bias–variance trade-off,” PNAS

(2019)

11 / 30



Setup: minimum-norm interpolator

min
β

∥β∥2 subject to Xβ = y

▶ Gradient descent in linear regression converges to β̂min−ℓ2 .
▶ Used to study benign overfitting in:

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear regression,” Proceedings of the National Academy of

Sciences, vol. 117, no. 48, pp. 30063–30070, Apr. 2020.

▶ Use to study double descent in:
M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice and the classical bias–variance trade-off,” PNAS

(2019)

11 / 30



Setup: minimum-norm interpolator

min
β

∥β∥2 subject to Xβ = y

▶ Gradient descent in linear regression converges to β̂min−ℓ2 .
▶ Used to study benign overfitting in:

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear regression,” Proceedings of the National Academy of

Sciences, vol. 117, no. 48, pp. 30063–30070, Apr. 2020.

▶ Use to study double descent in:
M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice and the classical bias–variance trade-off,” PNAS

(2019)

11 / 30



Analysing adversarial robustness

From:

E
[(

Adv-error(β̂)
)2

]
= E

[(
|Error(β̂)|+ δ∥β̂∥∗

)2
]

It follows that:

E[Error(β̂)2] + δ2∥β̂∥2∗ ≤ E[(Adv. error(β̂))2] ≤ 2
(
E[Error(β̂)2] + δ2∥β̂∥2∗

)
.
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Double-descent in the adversarial loss

E[(ℓ2-adv. error(β̂))2] ∝ E[Error(β̂)2] + δ2∥β̂∥22.

∥β̂∥2 also present a double descent behavior: As we increase the problem dimension, it
becomes possible to find solutions with smaller norm.

M. Belkin, D. Hsu, S. Ma, and S. Mandal , “Reconciling modern machine-learning practice and the classical bias–variance trade-off,” PNAS (2019)
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Asymptotic results

Analysing minimum-norm inteporlation:

(x i , ϵi ) ∼ Px × Pϵ, y i = xTi β + ϵi ,

10−1 100 101

#features/#data points

100

101

102

103

R
is

k

X = 0
X = 0.1
X = 0.5
X = 1
X = 2

Figure: Adversarial risk vs number of features m.

T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani,“Surprises in High-Dimensional Ridgeless Least Squares Interpolation,” Annals of Statisics.

50(2): 949-986 (2022).
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High-dimensionality as a source of brittleness

▶ Model:

y ∼ N (0, 1)

x i ∼ N (y , 1)

▶ Optimal predictor: β̂ =
[

1
#features , · · · ,

1
#features

]
▶ δ = E∥x∥2 ∝

√
#features

10−1 100 101 102

#features/#datapoints

10−3

10−1

101

R
is

k

ℓ∞-adv.
risk

I. J. Goodfellow, J. Shlens, C. Szegedy ,“Explaining and Harnessing Adversarial Examples”, ICLR 2015

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Ma, “Robustness May Be At Odds with Accuracy,” ICLR, p. 23, 2019.
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Is robustness at odds with accuracy?

When good model become more vulnerable to adversarial attacks as we add features?

Proposition

If E[Error(β̂)2] < ϵ:

E[(Adv. error(β̂))2] → ∞ as #features → ∞

if and only if
δ∥β̂∥∗ → ∞.

16 / 30



Example: optimal predictor vulnerable to adversarial attacks

▶ Optimal predictor: β̂ =
[

1
#features , · · · ,

1
#features

]
▶ ∆x = E∥x∥2 ∝

√
#features

▶ For our example,
δ∥β̂∥1 =

√
#features

hence
E[(ℓ∞-adv. error(β̂))2] = O(#features)

Mismatched example

▶ ℓ∞-adv. attack ∥∆x∥∞ ≤ δ.

▶ ∆x ∝ E∥x∥2.

:
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Example: minimum ℓ2-norm interpolator

Minimum ℓ2-norm interpolator and Gaussian features:

∥β̂∥1 = O(1) ∥β̂∥2 = O(1/
√
m)

Now, if we scale
δ ∝ E∥x∥2 = O(

√
m).
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Figure: Adv. risk.
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The effect of adversarial training and regularization

Empirical risk minimization:

min
β

1

n

n∑
i=1

(y i − xTi β)
2

Adversarial training:

min
β

1

n

n∑
i=1

max
∥∆x i∥≤δ

(y i − (x i +∆x i )
Tβ)2
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The effect of regularization

▶ Ridge and ℓ2-adversarial training

∥β̂∥1 = O(1)

▶ Lasso, ℓ∞-adversarial training

∥β̂∥1 = O(1/
√
m)
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Figure: Adversarial ℓ∞ risk and δ ∝ E∥x∥2.
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Robustness in high-dimensions

Adversarial training



Adversarial training in linear models

▶ Adversarial training,

1

n

n∑
i=1

max
∥∆x∥≤δ

(y i − (x i +∆x)Tβ)2

can be reformulated as

1

n

n∑
i=1

(
|y i − xTi β|+ δ∥β∥∗

)2
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Lasso and ℓ∞-adversarial training

▶ ℓ∞-adversarial training:

1

n

n∑
i=1

(
|y i − xTi β|+ δ∥β∥1

)2

▶ Lasso:
1

n

n∑
i=1

(
|y i − xTi β̂|

)2
+ δ∥β∥1
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Ridge regression and ℓ2-adversarial training

▶ ℓ2-adversarial training:

1

n

n∑
i=1

(
|y i − xTi β|+ δ∥β∥2

)2

▶ Ridge:

1

n

n∑
i=1

(
|y i − xTi β|

)2
+ δ∥β∥22
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Diabetes example
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Figure: Regularization paths.
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Minimum-norm solution

Minimum ℓ2-norm solution

min
β

∥β∥2 subject to Xβ = y

▶ Gradient descent in linear regression converges to β̂min−ℓ2 .
▶ Used to study benign overfitting in:

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear regression,” Proceedings of the National Academy of

Sciences, vol. 117, no. 48, pp. 30063–30070, Apr. 2020.

▶ Use to study double descent in:
M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice and the classical bias–variance trade-off,” PNAS

(2019)

Minimum ℓ1-norm solution

min
β

∥β∥1 subject to Xβ = y

▶ Basis pursuit: i.e. allow you to recover sparse signals.
▶ Can also be used to study benign overfitting and double descent, i.e.,

F. Koehler, L. Zhou, D. J. Sutherland, and N. Srebro, “Uniform Convergence of Interpolators: Gaussian Width, Norm Bounds and Benign

Overfitting,” presented at the Advances in Neural Information Processing Systems, 2021
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Minimum-norm interpolator and adversarial training

Theorem

Adversarial training is minimized at the minimum norm interpolator

min
β

∥β∥∗ subject to Xβ = y

iff 0 < δ < δ̄.

Surprises in adversarially-trained linear regression (2022). Antônio H. Ribeiro, Dave Zachariah, Francis Bach, Thomas B. Schön. Work in progress.
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ℓ2-adversarial training vs ridge regression

Relation to min-norm solution

▶ (corollary) β̂min-ℓ2 is the solution to ℓ2-adversarial training iff 0 < δ < δ̄.

▶ Ridge β̂ridge(δ) → β̂min−ℓ2 as δ → 0+.
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Figure: Training MSE vs regularization parameter.
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ℓ∞-adversarial training vs Lasso

Relation to min-norm solution

▶ (corollary) β̂min-ℓ1 is the solution to ℓ∞-adversarial training iff 0 < δ < δ̄.

▶ Lasso β̂lasso(δ) → β̂min−ℓ1 as δ → 0+ (LARS algorithm)..
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Figure: Training MSE vs regularization parameter.
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Discussion

▶ Distinct behavior from other parameter shrinking methods (overparametrized).

▶ Explanation for abrupt transitions. Let:

fi (β) = |yi − xTi β|+ δ∥β∥2.

and assume |yi | = ∥xi∥2 = 1
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New interpretation for minimum-norm interpolator

101 102

# features
10−2

10−1
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101

X̄

min. ℓ2-norm
min. ℓ1-norm

Figure: Threshold δ̄ vs number of features m.

▶ Setup: y i = x⊤i β + ϵi , x i ∼ N (0, r2Im) and ϵi ∼ N (0, σ2)

▶ Increasing the number of features for minimum-norm interpolators increases the
maximum disturbance δ̄ in the corresponding adversarial training problems.
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Summary
▶ Dual formula for the adversarial error:(

Adv-error(β̂)
)2

=
(
|Error(β̂)|+ δ∥β̂∥∗

)2

▶ Consequences to adversarial robustness
▶ Simplify analysis of adversarial robustness:

E
[(

Adv-error(β̂)
)2

]
∝ E

[
Error(β̂)2

]
+ δ∥β̂∥2∗

▶ Double descent can be observed in adversarial scenarios.
▶ Sufficient and necessary conditions for good models to be vulnerable to adversary.

▶ Consequences to adversarial training:
▶ Convex formula / Similarities with parameter shrink methods
▶ ℓ∞-adversarial training ⇒ sparse solutions
▶ Can interpolate for disturbance bounded by δ > 0.

Thank you!

INRIA de Paris - Room C407 (from now to mid-June)
antonio.horta.ribeiro@it.uu.se

antonior92.github.io
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