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I - Background



Setup

▶ Train Dataset:
(x i , y i ), i = 1, · · · ,#train.

▶ Model:
fβ : x 7→ ŷ

▶ Parameter estimation method:

min
β

#train∑
i=1

(y i − fβ(x i ))
2

▶ Test dataset.
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Setup

▶ Train Dataset:
(x i , y i ), i = 1, · · · ,#train.

▶ Model:
fβ : x 7→ ŷ

▶ Parameter estimation method:

min
β

#train∑
i=1

(y i − fβ(x i ))
2

▶ Test dataset.

Revisiting Parcimony in SysID and ML 1 / 29 Antônio H. Ribeiro, 2023
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System identification vs machine learning
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Bias-variance tradeoff
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The principle of parsimony

▶ “Everything should be made as simple as possible, but not simpler”
(Albert Einsten)

▶ “Plurality should not be posited without necessity”
(William of Ockham)

▶ Of two competing theories, the simpler explanation of an entity is to be preferred
(Occam’s razor)

▶ “It is superfluous to suppose that what can be accounted for by a few principles
has been produced by many.”(Summa Theologica, Thomas Aquinas)

▶ “To think is to forget a difference, to generalize, to abstract. In the overly replete
world of Funes, there were nothing but details.”
(Funes, the Memorious, Jorge Luis Borges)
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Model size in neural networks

Language models Image classification

Figure: Models number of parameters

J. Simon (2021) “Large Language Models: A New Moore’s Law?”. Online (acessed: 2021-11-09): huggingface.co/blog/large-language-models .

M. Tan and Q. V. Le (2019) “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks,” ICML.
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Rethinking generalization

Deep neural networks can fit randomly labeled training data but still generalize well.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. ICLR, 2017

Definition: Interpolator

We say the model fβ interpolates the training data if:

fβ(x i ) = y i , ∀i = 1, · · · ,#train
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Linear-in-the-parameters models

▶ Model:
fβ(x) = β⊤ϕ(x)

where ϕ map from input to feature space ϕ : R#inputs 7→ R#parameters .

▶ Can we solve the system ϕ(x1)ϕ(x2)
...


︸ ︷︷ ︸

X

β =

y1y2
...


︸ ︷︷ ︸

y
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Solutions of a linear system

The system
Xβ = y

has:

▶ no solution if rank(X ) < #train

▶ one unique solution if rank(X ) = #train

▶ multiple solution if rank(X ) > #train
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Solutions of a linear system

The system
Xβ = y

has:

▶ no solution if rank(X ) < #train

▶ one unique solution if rank(X ) = #train

▶ multiple solution if rank(X ) > #train

Revisiting Parcimony in SysID and ML 8 / 29 Antônio H. Ribeiro, 2023



Gradient descent on overparametrized

▶ Cost function:
V (β) = ∥Xβ − y∥2

▶ Optimization:
βi+1 = βi − γ∇V (βi )

▶ Gradient descent converges to the minimum-norm solution:

min
θ

∥β∥2 subject to Xβ = y .
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Double-descent

M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning practice and the classical bias–variance trade-off,” Proceedings of

the National Academy of Sciences, vol. 116, no. 32, pp. 15849–15854, 2019, doi: 10.1073/pnas.1903070116.
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II - Dynamical systems



Double-descent in system identification

Can we observe the phenomena in data from a dynamical system ?

Beyond Occam’s Razor in System Identification: Double-Descent when Modeling Dynamics
Antônio H. Ribeiro, Johannes N. Hendriks, Adrian G. Wills, Thomas B. Schön.

IFAC Symposium on System Identification (SYSID), 2021.

Honorable mention: Young author award
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Syntetic Dataset

y t =
(
0.8− 0.5e−y2

t−1

)
y t−1 −

(
0.3 + 0.9e−y2

t−1

)
y t−2

+ ut−1 + 0.2ut−2 + 0.1ut−1ut−2 + vt ,

vt ∼N (0, σ2
v )

Figure: System with process
noise.

Chen, S., Billings, S.A., and Grant, P.M. (1990). Non-Linear System Identification Using Neural Networks. International Journal of Control, 51(6),

1191–1214.
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Model

▶ Input: (ARX)
x t = [ut−1, ut−2, y t−1, y t−2]

⊤

▶ Nonlinear feature map:
ϕ(x t) = σ(Wx t + b)

W ⇝ a matrix with dimension #parameters × 4:

b ⇝ is a vector with dimension #parameters

wi ,j ∼ N (0, γ2), bi ∼ U(0, 2π]
σ ⇝ activation function.

▶ Neural network with frozen first layer
▶ As #parameters → ∞ it approximates the Gaussian kernel map.

Rahimi, A. and Recht, B. (2008). Random Features for Large-Scale Kernel Machines. Advances in Neural Information Processing Systems

20, 1177–1184
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Results
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Figure: Double-descent in system identification. MSE = Mean square error.
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Parameter Norm
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Figure: Left: Parameter norm double desenct curve. Right: Test MSE vs parameter norm.
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Double-descent and benign-overfitting in dynamical systems

▶ Asymptotic results are available for the i.i.d.
case (but not for system identification)
T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani,“Surprises in

High-Dimensional Ridgeless Least Squares Interpolation,” Annals of Statisics.

50(2): 949-986 (2022).

▶ ”Consistency results” available for the i.i.d.
case (but not for system identification)
P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler, “Benign overfitting in linear

regression,” Proceedings of the National Academy of Sciences, vol. 117, no. 48,

pp. 30063–30070, Apr. 2020. 10−1 100 10110−2
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103
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III - Adversarial examples



Adversarial examples

Figure: Adversarial examples in image classification.

Source: I. J. Goodfellow, J. Shlens, C. Szegedy ,“Explaining and Harnessing Adversarial Examples”, ICLR 2015.
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Adversarial robustness

“what is the role of high-dimensionality in model robustness?”

Regularization properties of adversarially-trained linear regression
Antônio H. Ribeiro, Dave Zachariah, Francis Bach, Thomas B. Schön.

Submited NeurIPS (2023)

Overparameterized Linear Regression under Adversarial Attack.
Antônio H. Ribeiro, Thomas B. Schön.

IEEE Transactions on Signal Processing (2023)

Revisiting Parcimony in SysID and ML 18 / 29 Antônio H. Ribeiro, 2023



Framework: Linear regression

Simplest case where adversarial vulnerability has been observed.

I. J. Goodfellow, J. Shlens, C. Szegedy ,“Explaining and Harnessing Adversarial Examples”, ICLR 2015

D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Ma, “Robustness May Be At Odds with Accuracy,” ICLR, p. 23, 2019.

▶ Training dataset:
(x1, y1), (x2, y2), · · · , (xn, yn) ⇒ β̂

▶ Model prediction
ŷ = β̂Tx

▶ Error(β̂) = |y − xTβ̂|
▶ Adv-error(β̂) = max∥∆x∥≤δ

∣∣∣y − (x +∆x)Tβ̂
∣∣∣
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Adversarial error in linear regression

▶ Error(β̂) = |y − xTβ̂|
▶ Adv-error(β̂) = max∥∆x∥≤δ

∣∣∣y − (x +∆x)Tβ̂
∣∣∣

▶ Dual formula for the adversarial error(
Adv-error(β̂)

)2
=

(
|Error(β̂)|+ δ∥β̂∥∗

)2

▶ where ∥ · ∥∗ is the dual norm.
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ℓp-adversarial attacks

▶ ℓ∞-adversarial attack: {∥∆x∥∞ ≤ δ} ⇒ dual norm: ∥∆x∥1

▶ ℓ2-adversarial attack: {∥∆x∥2 ≤ δ} ⇒ dual norm: ∥∆x∥2
▶ ℓp-adversarial attack: {∥∆x∥p ≤ δ} ⇒ dual norm: ∥∆x∥q

for 1/p + 1/q = 1

ℓ1 ℓ1.5 ℓ2 ℓ20 ℓ∞
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Analysing adversarial robustness

From:

E
[(

Adv-error(β̂)
)2

]
= E

[(
|Error(β̂)|+ δ∥β̂∥∗

)2
]

It follows that:

E[Error(β̂)2] + δ2∥β̂∥2∗ ≤ E[(Adv. error(β̂))2] ≤ 2
(
E[Error(β̂)2] + δ2∥β̂∥2∗

)
.
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Double-descent in the adversarial loss

∥β̂∥2 also present a double descent behavior.

E[(ℓ2-adv. error(β̂))2] ∝ E[Error(β̂)2] + δ2∥β̂∥22.

as illustrated in the example below:

10−1 100 101 102

#params / #train

100

102

M
SE

ℓ2 adv.
no adv.

Figure: Adv. risk. minimum ℓ2-norm interpolator
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Adversarial training

▶ One of the most effective approaches for deep learning models to defend against
adversarial attacks.

▶ Training models on samples that have been modified by an adversary

▶ Min-max problem, searching for the best solution to the worst-case attacks
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Adversarial training in linear models

▶ Adversarial training,

1

n

n∑
i=1

max
∥∆x∥≤δ

(y i − (x i +∆x)Tβ)2

can be reformulated as

1

n

n∑
i=1

(
|y i − xTi β|+ δ∥β∥∗

)2
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Minimum-norm interpolator and adversarial training

Theorem

Adversarial training is minimized at the minimum norm interpolator

min
β

∥β∥∗ subject to Xβ = y

iff 0 < δ < δ̄.

Regularization properties of adversarially-trained linear regression
Antônio H. Ribeiro, Dave Zachariah, Francis Bach, Thomas B. Schön.

Submited NeurIPS (2023)
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New interpretation for minimum-norm interpolator

▶ Minimum norm interpolator is equivalent to a models adversarially trained with
δtrain = δ̄

▶ We can compute δ̄ from the last theorem

101 102

#params/#train

10−1

100

X̄

min. ℓ2-norm
min. ℓ1-norm

Figure: Threshold δ̄ vs number of features m.

▶ Upper bound on the test adversarial error of minimum-norm interpolators√
E[(Adv. error(β̂))2]−

√
E[Error(β̂)2] ≲

δtest
δtrain

Revisiting Parcimony in SysID and ML 27 / 29 Antônio H. Ribeiro, 2023
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Minimum ℓ2-norm interpolator under ℓ∞ adversarial attacks
We had from before:

E[(ℓ∞-adv. error(β̂))2] ∝ E[Error(β̂)2] + δ2∥β̂∥21.

Minimum ℓ2-norm interpolator and Gaussian features:

∥β̂∥1 = O(1) δ ∝ E∥x∥2 = O(
√
m).

10−1 100 101 102

#params / #train

100

102

M
SE

ℓ∞ adv.
ℓ2 adv.
no adv.

Figure: Adv. risk. minimum ℓ2-norm interpolator

Overparameterized Linear Regression under Adversarial Attack.
Antônio H. Ribeiro, Thomas B. Schön.

IEEE Transactions on Signal Processing (2023)
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Next directions

1. Tailored solver;

2. Generalize to other losses;

3. Generalization to nolinear models.
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Next directions

1. Tailored solver;

2. Generalize to other losses;

3. Generalization to nolinear models.

Revisiting Parcimony in SysID and ML 29 / 29 Antônio H. Ribeiro, 2023



Summary

▶ Minimum-norm interpolators as a simple model to study generalization.

▶ Double-descent and benign-overfiting.

▶ Double descent can be observed in dynamic-systems.

▶ Dual formula for the adversarial error in linear models:(
Adv-error(β̂)

)2

=
(
|Error(β̂)|+ δ∥β̂∥∗

)2

▶ Minimum-norm interpolation is equivalent to adversarial training with δ̄

Thank you!

antonio.horta.ribeiro@it.uu.se
antonior92.github.io


